unser Gehirn
steuert alles.
Regulation
Unabhängig von Umgebungs- und Belastungsbedingungen muss die Blutversorgung zu jedem Zeitpunkt aufrechterhalten bleiben. Es muss sichergestellt werden, dass Herzaktion und Blutdruck immer bestmöglich reguliert werden, alle Organe ein Mindestmaß an Blut erhalten und der Blutstrom entsprechend den Bedürfnissen von den ruhenden hin zu den aktiven Organen verteilt wird, da eine Maximalversorgung aller Organe zur gleichen Zeit nicht möglich ist. Würden alle Organe gleichzeitig maximalversorgt werden, so würde der Blutdruck stark abfallen und zum Schock führen, weil die Gesamtblutmenge dafür nicht ausreicht.
Der Körperkreislauf besteht daher aus vielen parallel geschalteten Kreisläufen, die je nach Aktivität zu- oder abgeschaltet werden können. So wird etwa nach der Nahrungsaufnahme der Verdauungsapparat vorrangig versorgt, andere Organsysteme werden gedrosselt, Hochleistungssport ist dann nicht möglich. Die Realisierung dieser Zu- und Abschaltungen erfolgt über mehrere Wege:
* Die Gefäßweite (das Lumen) der Arterien wird durch den Spannungszustand (Tonus) der glatten Muskulatur in der Gefäßwand gesteuert. Sind die Gefäße erweitert, fließt mehr Blut in das entsprechende Gebiet.
* Arteriovenöse Anastomosen: Anastomosen sind Verbindungen zwischen kleineren Blutgefäßen, in diesem Fall zwischen Arterie und zugehöriger Vene. Diese arteriovenösen Anastomosen sind verschließbar, in diesem Fall nimmt das Blut den gewohnten Weg durch die Kapillaren. Öffnen sich diese Verbindungen, so strömt ein Großteil des Blutes aufgrund des geringeren Strömungswiderstandes von der Arterie durch die Abkürzung direkt in die Vene, das Kapillarbett bekommt also weniger Blut.
* Vorkapillare Schließmuskeln: Normale Arterien können zwar ihr Lumen verengen, aber nicht bis zu einem vollständigen Verschluss. In den kleinsten Arteriolen gibt es dagegen spezielle Bildungen der mittleren Wandschicht, die als Sphincter precapillaris bezeichnet werden. Diese können das Lumen verschließen und somit den Blutfluss im sich anschließenden Kapillarbett reduzieren.
* Sperrarterien: Sperrarterien sind Arterien, die ebenfalls ihr Lumen verschließen können. Solche Sperrarterien gibt es am Penisschwellkörper. Sie sind normalerweise geschlossen und erst ihre Öffnung löst einen Blutfluss und damit die Schwellkörperfüllung (Erektion) aus.
* Drosselvenen: Drosselvenen sind Venen, die ihr Lumen einengen können. Sie kommen vor allem in der Schleimhaut des Darmes vor. Bei einer Einengung wird der Blutabfluss aus dem Darm verlangsamt und damit die Blutmenge vergrößert und die Zeit zum Übertritt der resorbierten Nährstoffe in das Blut verlängert. Außerdem sind sie im Nebennierenmark zu finden.
Kreislaufregulatorische Einrichtungen werden durch
* lokale Steuerung,
* hormonale Signale und
* neuronale Signale beeinflusst.
Lokale Steuerung
Die lokale Steuerung oder auch Autoregulation stellt zum einen das Gleichbleiben der Organdurchblutung auch bei wechselndem Blutdruck sicher, zum anderen passt sie die Durchblutung den Stoffwechselbedingungen des Organs an (zum Beispiel steigt die Durchblutung des Magen-Darm-Traktes während der Verdauung). Dies findet auf unterschiedlichen Wegen statt.
* Beim Bayliss-Effekt findet eine Kontraktion der Gefäßmuskulatur als Antwort auf eine Gefäßweitung durch eine Blutdruckerhöhung statt. Er tritt in Gehirn, Niere und Verdauungstrakt auf, nicht aber in der Haut oder der Lunge.
* Sauerstoffmangel löst eine Gefäßweitung aus, die daraus resultierende Mehrversorgung mit Blut wirkt diesem entgegen. (In der Lunge findet das genaue Gegenteil statt, eine geringe Sauerstoffsättigung hat eine Gefäßverengung zur Folge.)
* Außerdem löst das Vorkommen gewisser Stoffe im Blut lokal eine Gefäßweitung aus. Dieser lokal-metabolische Effekt wird besonders durch eine erhöhte Konzentration von Kohlendioxid, ADP, AMP, Adenosin, Wasserstoff- und Kalium-Ionen hervorgerufen. Die daraus resultierende bessere Durchblutung begünstigt den Abtransport dieser Stoffe. Besonders wichtig ist diese Art der Steuerung im Myokard und im Gehirn.
Hormonale Steuerung
Hormone wirken entweder direkt auf die Muskulatur der Gefäßwand (z. B. Adrenalin), oder sie bewirken vor Ort die Freisetzung von gefäßaktiven Substanzen (z. B. Stickstoffmonoxid, Endothelin), die dann lokal wirksam werden.
* Stickstoffmonoxid (NO) hat eine gefäßerweiternde Wirkung. Es wird aus dem Endothel (der Gefäßwand auskleidenden Zellschicht) ausgeschüttet, wenn diese durch Acetylcholin, ATP, Endothelin-1 oder Histamin stimuliert wird.
* Endothelin-1 stimuliert zum einen die Freisetzung von NO, zum anderen wirkt es lokal direkt auf die Gefäßmuskulatur, dann aber gefäßverengend. Es wird vom Endothel nach Stimulation durch Angiotensin II und Vasopressin (Antidiuretisches Hormon) freigesetzt.
* Adrenalin wirkt je nach vor Ort überwiegenden Rezeptoren gefäßverengend (α1-Adrenorezeptoren, zum Beispiel in Haut und Niere) oder gefäßweitend (β2-Adrenorezeptoren, zum Beispiel in Skelettmuskel, Myokard und Leber). β-Rezeptoren sind empfindlicher als α-Rezeptoren, werden aber beide Rezeptoren gleichzeitig ausgelöst so dominieren die α-Rezeptoren.
* Eikosanoide haben unterschiedliche Effekte auf die Gefäße. Während Prostaglandin F2 und Thromboxane A2 und B2 gefäßverengend wirken, haben Prostaglandin-E2 und Prostacyclin gefäßerweiternde Wirkungen.
* Bradykinin, Kallidin und Histamin wirken gefäßerweiternd. Außerdem setzt die Stimulation des Endothels durch Bradykinin den EDHF (endothel-derived hyperpolarizing factor, hyperpolarisierender Faktor des Endothels) frei, der Gefäßmuskelzellen hyperpolarisiert.
* Serotonin bewirkt eine Gefäßverengung, und erhöht außerdem die Durchlässigkeit der Kapillaren.
* Angiotensin II wirkt innerhalb des Renin-Angiotensin-Aldosteron-Systems gefäßverengend, ebenso Vasopressin. Diese Gefäßverengung findet im Rahmen der Regulation des Wasserhaushalts durch die Niere statt.
Neuronale Steuerung
Die neuronale Steuerung findet hauptsächlich durch den Sympathikus statt, und setzt an den kleinen Arterien und den Arteriolen oder den Venen und deren Rückstrom zum Herzen an. Der postganglionäre Neurotransmitter ist das Noradrenalin, das an die α1-Rezeptoren anbindet, und deswegen gefäßverengend wirkt. Eine Gefäßweitung wird durch Nachlassen des Sympathikotonus erreicht. Ausgenommen hiervon ist die vom Parasympathikus innervierte Weitung der Gefäße der Speicheldrüsen und der Geschlechtsorgane (Erektion). Als Transmitter wirken NO und Bradykinin. Die Steuerung durch Sympathikus und Parasympathikus findet auf zwei Arten statt: zum einen über eine Art Bedarfsmeldung der Organe, zum anderen durch eine neuronale Mitinnervation, bei der das Gehirn neben der Aktivierung bestimmter Organe gleichzeitig deren Durchblutung steuert. Durch eine Verletzung von Nerven oder deren Fehlfunktion kann es zu einem spinalen oder neurogenen Schock kommen.
Zentrale Kreislaufsteuerung
Neben der Einflussnahme auf den Tonus der Gefäße findet auch noch eine zentrale Kreislaufsteuerung in der Medulla oblongata und dem Pons statt. Dabei werden Informationen von Kreislaufsensoren ausgewertet, die den arteriellen Blutdruck, die Pulsfrequenz, den Füllungsdruck des Niederdrucksystems und den pH-Wert, Kohlendioxid- und Sauerstoff-Partialdruck des Blutes messen.
Diese Drucksensoren befinden sich in der Wand der Aorta und der inneren Halsschlagader (Dehnungs- und Druckrezeptoren im Sinus caroticus) und im Niederdrucksystem in den Hohlvenen und den Vorhöfen (Dehnungssensoren). Diese Regulation wirkt aber nur akuten Blutdruckänderungen entgegen, wie zum Beispiel beim Aufstehen aus dem Liegen. Ist der Blutdruck jedoch immer auf einem erhöhten (oder erniedrigten) Niveau, so erfolgt eine Anpassung und der „neue“ Blutdruck wird gleich gehalten.
Die Gaspartialdrücke und der pH-Wert werden von spezialisierten Sensoren (sog. Chemorezeptoren) in Paraganglien erfasst, die ebenfalls an der Halsschlagader (Glomus caroticum), der Aorta (Paraganglion supracardiale, Syn. Glomus aorticum) und der Lungenarterie liegen.
Die Informationen dieser Sensoren werden an das Kreislaufzentrum im Nachhirn (Medulla oblongata) übermittelt.
Quelle Wikipedia